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Abstract – The mite Varroa destructor is an important honey bee parasite that causes substantial losses of honey
bee colonies worldwide. Evolutionary theory suggests that the high densities at which honey bees are managed in
large-scale beekeeping settings will likely select for mites with greater growth and virulence, thereby potentially
explaining the major damage done by these mites. We tested this hypothesis by collecting mites from feral bee
colonies, “lightly”managed colonies (those from small-scale sedentary operations), and “heavily”managed colonies
(those from large-scale operations that move thousands of colonies across the US on a yearly basis).We established 8
apiaries, each consisting of 11 colonies from a standardized lightly managed bee background that were cleared of
mites, and artificially infested each apiary with controlled numbers of mites from feral, lightly managed, or heavily
managed bees or left uninoculated as negative control. We monitored the colonies for more than 2 years for mite
levels, colony strength (adult bee population, brood coverage, and honey storage), and survival. As predicted by
evolutionary theory, we found that colonies inoculated with mites from managed backgrounds had increased
V. destructor mite levels relative to those with mites from feral colonies or negative controls. However, we did
not see a difference between heavily and lightly managed colonies, and these higher mite burdens did not translate
into greater virulence, as measured by reductions in colony strength and survival. Our results suggest that human
management of honey bee colonies may favor the increased population growth rate of V. destructor , but that a range
of potential confounders (including viral infections and genotype-by-genotype interactions) likely contribute to the
relationship between mite reproduction and virulence.
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1. INTRODUCTION

European honey bee (Apis mellifera L.) colo-
nies have experienced widespread losses in the
past decades in the US and Europe, which is a
particular concern due to the importance that

honey bees play in agricultural pollination ser-
vices critical to both the economy and human
health (National Research Council 57; Pettis and
Delaplane 59). While honey bees are facing nu-
merous challenges, from pesticides to land use
changes, parasites have emerged as a significant
factor in these losses (Potts et al. 60). In the first
half of the 20th century, the obligate ectoparasitic
mite Varroa destructor (Acari: Mesostigmata:
Varroidae) made a sustained host switch from
the Asian honey bee (Apis cerana ) to the Euro-
pean honey bee (Rosenkranz et al. 65). Since that
time, V. destructor has spread around the world
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and become the largest biotic threat, termed
“varroosis”, currently facing the beekeeping in-
dustry (Sammataro et al. 66; Rosenkranz et al.
65). In addition, V. destructor is a vector for a
range of economically important viruses, and the
in terac t ion between these vi ruses and
V. destructor is considered the single most impor-
tant factor in honey bee colony losses worldwide
(Boecking and Genersch 9; Wegener et al. 71).

In the honey bee\ system, the dynamics by
which V. destructor mites interact with honey
bee colonies can vary drastically. Feral honey
bee colonies, those colonies that are unman-
aged by humans, typically occur at a density of
around one per square kilometer in the USA
(Seeley 67). In these isolated settings, bees and
mites are not likely to interact with individuals
from other honey bee colonies on a regular
basis. In contrast, industrial beekeeping opera-
tions manage thousands of colonies in a much
smaller area. Virulence-transmission trade-off
theory (Boots and Sasaki 11; Boots et al. 12;
Alizon et al. 2; Lion and Boots 50; Webb et al.
70) suggests that the higher colony densities
and high rates of between-colony mixing
f ound i n managed ope r a t i o n s f a vo r
V. destructor mites with increased reproduc-
tion and virulence. According to trade-off the-
ory, natural selection favors virulent parasites
that cause reductions in host fitness by
selecting for between-host parasite transmis-
sion (Levin and Pimentel 49; Anderson and
May 5; Ewald 31; Bremermann and Pickering
14; Antia et al. 6; Bull 16; Levin 48; Boots
and Mealor 10). This theory is based on the
assumption that both between-host transmis-
sion and virulence (usually defined as
parasite-induced host mortality) increase with
increasing within-host parasite reproduction,
an assumption that has found empirical sup-
port in a wide range of systems (Messenger
et al. 54; Mackinnon and Read 51, 52; Jensen
et al. 40; De Roode et al. 25; Hawley et al.
37). As a result, parasites are generally expect-
ed to evolve an intermediate level of within-
host growth and consequent virulence: para-
sites with low growth rates are selected against
because of low between-host transmission,
while parasites with high growth rates are

selected against by killing the host before
transmission can occur (Levin and Pimentel
49; Lenski and May 46). The expected level
of optimal virulence, however, depends strong-
ly on the density of susceptible host individ-
uals, as well as the spatial structure of the
population (Kamo and Boots 42; Boots and
Mealor 10). In well-mixed high-density host
populations, transmission opportunities are
ample and the cost of high virulence in terms
of killing hosts before transmitting is low. This
type of environment is common in agricultural
settings and according to theory can favor the
evolution of higher virulence (Kennedy et al.
43). In contrast, in highly structured low-
density host populations, transmission oppor-
tunities are rare and costs of virulence are
high. As a result, evolutionary theory predicts
selection for greater virulence in highly dense
and well-mixed populations than in low densi-
ty populations with high spatial structure. Ev-
idence for such increased virulence evolution
due to greater host density remains lacking
outside of laboratory settings (Kerr et al. 44;
Boots and Mealor 10), but it is now clear that
practices imposed by agriculture can select for
more deadly parasites, as has been demonstrat-
ed, for example, in the increased virulence of
the virus causing Marek’s disease due to vac-
cination of chickens with a vaccine that pro-
vides tolerance, but not resistance, to the target
virus (Atkins et al. 7; Read et al. 62).

The contrasting transmission conditions
driven by density and population mixing are
crucial to honey bees, where industrial bee-
keeping practices have shifted the host-
parasite interaction from low densities with
high spatial structure in feral bees to highly
dense and well-mixed populations in industri-
ally managed bees. Thus, based on virulence-
transmission trade-off theory, we would expect
greater selection for parasite growth and viru-
lence in managed honey bee colonies than in
feral colonies (Brosi et al. 15). By promoting
increased transmission opportunities, manage-
ment practices such as moving frames of brood
to boost struggling colonies (a common bee-
keeping practice) and the high rates of mixing
of managed bees due to migratory beekeeping

Varroa destructor virulence assay 277



could contribute to Varroa destructor viru-
lence evolution and be responsible for main-
taining virulent Varroa destructor genotypes
in managed honey bee colonies (Fries and
Camazine 32; Calderón et al. 17; Guzmán-
Novoa et al. 36; Brosi et al. 15).

Our current understanding of these relation-
ships in the honey bee system is limited, but
there is a small amount of research that is
consistent with the virulence-transmission
trade-off hypothesis. Based on a comparison
of bee colonies infected with mites from dif-
ferent backgrounds, Seeley (67) proposed that
avirulent mite strains may explain feral colo-
nies surviving V. destructor better than feral
bee resistance to the mites. Migratory bee-
keepers have reported more colony mortality
than small-scale beekeepers (Dahle 22). More
V. destructor transmission has been observed
in higher-density (compared to lower-density)
honey bee colonies (Nolan and Delaplane 58;
Dynes et al. 30). Furthermore, studies indicate
a genetic basis for variation in mite virulence,
confirming that virulence could be acted upon
by natural selection (De Jong and Soares 23;
Anderson 4; Corrêa-Marques et al. 20, 21).

To understand if mites from different man-
agement regimes have evolved contrasting
virulence, we completed a large and replicat-
ed study at the apiary level to examine
varroosis using a highly standardized ap-
proach which to our knowledge has not been
previously attempted. Specifically, we com-
pared how mites evolved from different hon-
ey bee management histories (feral, lightly
managed, or heavily managed) reproduced
and affected bee colonies from a common,
lightly managed background. We hypothe-
sized that V. destructor mites that evolved
under more intensive honey bee management
regimes had greater population growth rates
and increased virulence compared with lower
honey bee management intensity. We mea-
sured both mite burdens and effects on colo-
ny strength over more than 2 years. The
strength of our approach lies in our colony
and queen standardization, mite clearance,
standardized inoculations, and replication at
the apiary level.

2. MATERIALS AND METHODS

2.1. Overview

We performed a vi ru lence assay on
V. destructor mites collected from different honey
bee management backgrounds on bees obtained
from a lightly managed background such as one
would find with backyard beekeepers. Our pur-
pose was to determine whether management con-
ditions have selected for mites with differential
growth rate and/or virulence and whether colony
response differs among these backgrounds. We
established eight apiaries, each consisting of 11
colonies, for a total of 88 colonies, in June 2015
around Athens, GA, USA, maintained by the Uni-
versity of Georgia Honey Bee Lab. Colonies were
initially cleared of mites and subsequently inocu-
lated with mites (N = 100 in multiple doses over
the course of 2 months). We used 7–9 mite donor
colonies for each management background type
(feral, lightly managed, and heavily managed). In
order to ensure a sufficient quantity of mite inoc-
ulations for each experimental colony, mites were
pooled from between 1 and 3 of the 7–9 possible
donor colonies (Table I). Colonies in two apiaries
each were inoculated withmites from feral, lightly
managed, or heavilymanaged backgrounds, while
two apiaries were established as negative controls
and were not inoculated with mites.

2.2. Mite and honey bee backgrounds

2.2.1. Mite sources

We collected live mites from different source
backgrounds by dusting colonies with powdered
sugar and gathered mites that were dislodged and
fell onto a piece of cardboard placed on the bot-
tom of the hive. Mites from feral backgrounds
were obtained from honey bee colonies that orig-
inated from swarm traps placed in remote forest
settings (to reduce likelihood of swarms from
recently managed colonies) in Georgia (Oconee
National Forest or the Okefenokee National Wild-
life Refuge), while mites from lightly managed
backgrounds originated from colonies from typi-
cal backyard beekeeper management systems. For
the heavily managed mites, we acquired mites
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from a migratory beekeeper that manages thou-
sands of colonies. Colonies were housed in stan-
dard five-frame Langstroth nucleus hive boxes
and we attempted to minimize drift by arranging
colonies in a circular layout with all entrances
facing outwards from the center of the circle, with
1 m between the colonies. We further attempted to
minimize drift by maximizing bees’ ability to
visually distinguish between colonies (Dynes
et al. 30). The colonies were painted different
colors, placed at different heights above the
ground (5, 20, or 40 cm), with different symbols
painted at the hive entrance.

2.2 .2 . Colony standardizat ion, mite
clearance, and mite inoculation

We started with highly standardized colonies to
minimize variation. We obtained mated queens
from a single queen breeder in southern Georgia,
USA, and added 1.1 kg (2.5 lb) adult bees from a
common genetic background to each package. To
clear mites from the standardized packages, we
placed them in a dark room overnight at 16.6 °C
(62 °F) and sprayed with sugar water 1 h prior to
the application of 30 mL of a 2.8% oxalic acid
solution (Milani 55). Each package was installed 3
days later into a nucleus colony in a randomly
assigned apiary at least 5 km from any known
colonies (Figure S1, map). Mites were collected
from source colonies outside of the experiment by
sifting powdered sugar over the colony and
collecting dislodged mites at the bottom of the
colony. We used small natural fibered paint-
brushes to place mites on damp coffee filters.

We kept mites in an incubator set at 35 °C (95
°F) until all mites were collected for each dose.
We then transferred all mites (N = 100 mites per
colony) evenly to an uncapped brood frame and
waited to ensure that mites were crawling before
returning the frame to the colony.

To maintain our focus on these original colo-
nies (and their queens), we enacted swarm control
on colonies likely to swarm by splitting those
colonies. We standardized swarm control in this
manner to ensure that small colonies were not
jeopardized by the procedure. A total of 33 out
of the 72 colonies that remained alive were split in
March and April of 2016. We employed a Fisher’s
exact test to determine that there was not a statis-
tically significant difference (X 2(3) = 6.44, P =
0.092) in amount of splitting between our treat-
ment groups. During the experiment, we did not
conduct any cont rol measures agains t
V. destructor . We continued the experiment from
June 2015 through December 2017, at which
point only 12 of the original 88 colonies were
surviving.

2.3. Data collection

2.3.1. Measuring V. destructor infestation

We measured V. destructor infestation levels
using three different methods. First, we used an
alcohol wash method described by Fries et al.
(33). Thismethod involves destructively sampling
approximately 300 bees from a colony in alcohol
and counting bees and mites (which detach from
the bees allowing easier counting) to get a relative

Table I. Mite inoculation sources within each apiary

Apiary Mite background Number of colonies receiving mites (mite donor source)

1 Negative control NA

2 Heavily managed 5 (HM7), 2 (HM1/6), 1 (HM8/13), 1 (HM10/12), 1 (HM6/10/12)

3 Lightly managed 3 (LM1/8), 2 (LM2), 2 (LM3), 2 (LM6/29), 1 (LM5)

4 Feral 4 (F7/13), 2 (F1), 2 (F3/10), 1 (F6), 1 (F2/14), 1 (F6/13)

5 Lightly managed 3 (LM5), 2 (LM2), 2 (LM3), 2 (LM6/Farm9), 1 (LM1/8), 1 (LM1/2/8)

6 Heavily managed 5 (HM7), 2 (HM1/6), 2 (HM10/12), 1 (HM2/27), 1 (HM8/13)

7 Negative control NA

8 Feral 5 (F7/13), 3 (F6), 1 (F1/2), 1 (F2/14), 1 (F3/F10)
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mite level on the adult bee population. We took
eight alcohol wash samples throughout the exper-
iment (roughly once a month during summer and
fall and once every 3 months at other times of the
year). Second, we used sticky boards (Branco
et al. 13), a standard method to evaluate
V. destructor levels in a colony by collecting
mites that fall and become entrapped on a board
placed at the bottom of a colony. We measured
mite levels with sticky boards six times through-
out the experiment including one measurement
immediately following package installation to
confirm that colonies were V. destructor free
(roughly every 3 months during the first year
and at the end of the experiment). Third, we
measured the mite population in brood cells by
opening 100 covered brood cells in each colony
and counting the number of mites. We measured
mite levels in brood cells five times throughout
the experiment (roughly every 4 months).

2.3.2. Colony strength assessments

We took periodic strength assessments through-
out the experiment in order to evaluate the effect of
mite background on colony strength. We followed
the assessment guidelines outlined in Delaplane
et al. (27) to measure colony strength in terms of
(1) adult bee population, (2) amount of brood, and
(3) amount of honey stored for each colony. We
performed these colony assessments five times over
the 2 years of the experiment (roughly every 4
months). We also recorded the date each colony
was found to be dead and last known date it was
alive for survival analyses.

2.4. Statistical analysis

2.4.1. Overview

We explored how our treatment levels
(mites from feral, lightly managed, and heavily
managed backgrounds) affected the mite bur-
dens and health response outcomes at the col-
ony level. We also assessed the effects of mites
from our different mite donor colonies within
each treatment level to determine whether var-
iation exists within the treatment levels. We
conducted analyses based on three classes of

response variables: (1) colony-level mite infes-
tation levels, (2) colony strength parameters,
and (3) colony-level survival.

2.4.2. Mite infestation levels and colony
strength

Our experiment used longitudinal repeated
measures and nested random effects which can
result in temporal and within-subject autocor-
relation and violates the assumption of inde-
pendence for parametric and linear regression
methods. Therefore, we used generalized esti-
mation equations (GEE) to account for repeat-
ed measures including temporal autocorrela-
tion. GEE models are similar to the more com-
mon general ized l inear mixed models
(GLMM), but handle within-group correlation
as a marginal model rather than as a condition-
al model found in GLMMs (Hubbard et al.
39). We used the ‘geeglm’ function in the
‘geepack’ package v1.2-1 (Højsgaard et al.
38) in R v.3.4.2 (R Core Team 19) to specify
and evaluate the GEE models in particular
because it allows for longitudinal data with
missing observations. We blocked the data by
a p i a r y a n d c o l o n y a n d u t i l i z e d a n
autoregressive (AR1) autocorrelation structure
to compare treatment levels with negative con-
trol colonies. We used the ‘lsmeans’ package
v. 2.27 in R to conduct post hoc pairwise
comparisons of response variables of mites
from different donor colonies using Tukey’s
method for multiple comparisons (Lenth 47).
We used the ‘missMDA’ package v.1.12 in R
(Josse and Husson 41) to impute missing
values (N = 917 out of a total of 1869 values)
for mite measurements that did not occur in
the same months and then created a composite
index combining the three methods of mite
measure using a unity-based normalization in-
dex (Dodge et al. 28). This index takes each
method of mite measurement and scales the
measurement to a value between 0 and 1 by
comparing the measurement to the minimum
and maximum value for that method. The nor-
malized value for each method of measure-
ment is then added to the other methods for
that particular sample for a composite index
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value. We employed a GEE model to evaluate
this composite index in addition to each of the
individual mite measures. We similarly
assessed colony strength measures (adult bee
population, brood production, and honey
stores) using GEE models to compare treat-
ment levels to negative control colonies.

2.4.3. Survival analysis

We performed survival analyses to deter-
mine whether there was a difference in colony
survival based on mite background. Colonies
were inspected periodically throughout the ex-
periment and exact timing of colony death
could not be determined. Therefore, we used
an interval of date of observed colony death
and date of last known colony viability. Given
this data structure, we analyzed survival with
mixed-effects survival (frailty) Cox propor-
tional hazard models, with interval censoring
via the ‘frailtypack’ package (Rondeau et al.
64) in R.

3. RESULTS

3.1. Overview

We collected data on mite levels and colony
strength parameters for each colony. The colony
strength assessments resulted in 231 measure-
ments from each colony on the adult bee popula-
tion, brood coverage, and honey storage. In order
to evaluate V. destructor levels throughout the
experiment, we collected 413 sticky boards, 353
alcohol washes (each containing approximately
300 worker bees), and 189 counts of mites in the
brood (each including 100 brood cells).

3.2. Mite infestation levels

The GEE model for mite levels as assessed by
sticky boards showed that colonies inoculated
with mites from heavily managed backgrounds
had significantly (Wald = 4.06, P = 0.044) higher
mite levels over the course of the experiment than
the negative control colonies (Figure 1a). The
model for the alcohol wash data showed that
colonies inoculated with mites from lightly

managed backgrounds had significantly (Wald =
3.94, P = 0.047) higher mite levels (Figure 1b).
The mites in brood measurement did not show
any treatment level significantly different from
negative controls (Figure 1c). However, the trend
in this measurement is consistent with the other
two measures with colonies inoculated with feral
mites tending to have the lowest mite levels and
the treatment groups from managed backgrounds
having themost mites. The GEE for the composite
index, which combines the three measurements of
mite level, indicated that colonies inoculated with
mites from both lightly and heavily managed
backgrounds had significantly (Wald = 5.99, P =
0.014 and Wald = 4.55, P = 0.033, respectively)
higher mite levels than the negative controls
(Figure 1d). We did not find significant differ-
ences in mite levels within mite donor colony
treatment groups.

3.3. Colony strength and survival analysis

The GEE model for the amount of brood
showed that colonies inoculated with mites from
feral backgrounds had significantly (Wald = 8.27,
P = 0.0040) lower levels of brood production
(Figure 2). The models for adult bee population
and honey stores did not show any significant
differences between the treatment groups and the
negative control colonies. The feral and heavily
managed treatments showed pairwise within treat-
ment differences for adult bees based on mite
donor colonies. The feral treatments had three
significantly different pairwise comparisons
(Wald = 19.67, P = 9.2 × 10−6 to Wald = 4.13,
P = 0.042). The heavily managed treatments had
five significantly different pairwise comparisons
(Wald = 14.38, P = 0.00015 to Wald = 3.91, P =
0.048). Eighty-six percent (76 of 88) of the colo-
nies died over the 2-year experiment. The Cox
survival analysis did not show a significant differ-
ence in survival between the different treatment
groups (Figure 3).

4. DISCUSSION

4.1. Overview
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The conditions for V. destructor are substan-
tially different in managed bee colonies versus
feral bee colonies (Seeley 67). The colony densi-
ties found in managed colonies far exceed those
found in feral populations and may facilitate dis-
ease transmission (Seeley and Smith 68). Accord-
ing to theory, increased transmission between
honey bee colonies may alter selection pressure
to favor increased replication and virulence (Brosi
et al. 15). We performed a large replicated study
assessing how mites from different management
backgrounds interacted with honey bees from a
single background. We were able to replicate
varroosis by standardizing bee background, clear-
ingmites, and inoculating with controlled doses of

mites in a large replicated study, which has not
been documented before. Our work provides ev-
idence consistent with theory that densities in
managed colonies have favored Varroa destructor
strains with increased growth rates. Specifically,
we found increased levels of mites in colonies
inoculated with mites taken from managed honey
bee populations. However, we did not find the
negative consequences we expected for colony
strength and survival based on increased mite
levels. In fact, for one response variable (brood
production), we found that colonies inoculated
with mites from feral backgrounds had a negative
colony strength outcome relative to bees inoculat-
ed with mites from managed backgrounds.
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4.2. Mite infestation

Our finding of increased levels of V. destructor
mites in colonies inoculated with mites fromman-
aged backgrounds (Figure 1) suggests that honey
bee management conditions have favored

increased mite reproductive rates. While these
levels were not always significantly different from
negative controls for each mite measure
(Figure 1a–c), the trend was always consistent
with our predictions, with colonies inoculated
with mites from feral backgrounds exhibiting the
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lowest mite levels and mites from managed back-
grounds showing increased mite burdens. The
composite index of all three mite measures
(Figure 1d) reduced within-group variation and
showed that colonies inoculated with mites from
managed backgrounds had increased levels of
infestation. This is consistent with the idea that
mites from feral vs managed backgrounds are
under different selection pressures with potential
differences in mite growth and/or virulence
(Corrêa-Marques et al. 20, 21).

4.3. Colony strength and survival analysis

We found significant within-treatment dif-
ferences based on mite donor colony for
adult bee population in apiaries inoculated
with mites from feral or heavily managed
bees. This indicates genetic variation in mites
among feral and heavily managed bee popu-
lations, as has been found in other studies
(Dynes et al. 29). While we did not find
significant differences in adult bee population
or honey stores across treatment groups, we
found that bees inoculated with feral-
background mites produced less brood than
bees inoculated with mites from managed
backgrounds (Figure 2). This was surprising
because we expected the opposite: that
higher levels of mites would lead to negative
colony strength outcomes. There are five po-
tential explanations for this pattern that we
consider here.

First, the bees we used could be adapted to
the mite strain that they coevolved with.
Predicting the outcome of host-parasite interac-
tions, such as in the honey bee—V. destructor
system—can be complicated by interactions
be tween hos t and pa r a s i t e geno type .
Genotype-by-genotype (G × G) interactions
mean that some parasite strains are more suc-
cessful against some hosts and some hosts less
suscept ib le to cer ta in paras i te s t ra ins
(Lambrechts et al. 45). When G × G interac-
tions occur, no single parasite strain optimally
infects all hosts, while no single host strain is
optimally defended against all parasite strains
(Carius et al. 18; Lambrechts et al. 45; de
Roode and Altizer 24). Both theory and

empirical studies indicate that coevolution can
lead to increased host tolerance; as a conse-
quence, a novel parasite strain from another
evolutionary background can lead to more vir-
ulence than a coevolved parasite (Greischar and
Koskella 35; Miller et al. 56; Read et al. 61;
Hawley et al. 37; Gibson et al. 34). If this is the
case, the observed patterns of mite growth and
colony strength may be due to a genetic mis-
match between lightly managed bees and mites
from feral colonies, with lightly managed bees
resisting, but not tolerating, mites from feral
colonies. This means that the bees are able to
keep parasite population levels in check
(resistance) but are unable to cope with the
damage caused by these lower levels of para-
sites (tolerance) (Restif and Koella 63; Best
et al. 8). Thus, while we would predict that
the higher transmission opportunities in man-
aged honey bees select for greater mite viru-
lence, we may also predict greater selection for
host resistance and tolerance, and the existence
of mismatches in coevolved mite and honey bee
strains may make virulence outcomes more dif-
ficult to predict. A full cross-infection experi-
ment using bees from different backgrounds (in
addition to mites of different backgrounds, as
we assessed here) is needed to follow up and
explore this hypothesis.

Second, honey bee queens may adjust their egg
laying frequency based on mite-induced bee mor-
tality. This pattern of increased brood production
as a potential means of compensation for higher
brood parasitism in V. destructor -infested colo-
nies was noted by Delaplane and Hood (26).
Third, our negative controls, which were initially
cleared of mites and not inoculated, had greater
mite levels than we expected. This suggests that
horizontal transmission of mites from outside the
experiment could have occurred (Nolan and
Delaplane 58). We isolated our experimental api-
aries from all known colonies by at least 5 km to
minimize this potential, but we cannot discount
this as a possibility. Fourth, our mite clearance
protocol may not have been as successful as we
anticipated, and residual mite populations could
have overtaken the inoculated population. How-
ever, our first sticky board samples taken after
clearance and before inoculation showed most
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colonies having zero mites and an overall low
average of 2.29 mites detected in the 72-h sample
per colony. Thus, our inoculation of 100 mites
should have overwhelmed any residual mite pop-
ulation. Finally, it is well known that the negative
consequences of Varroa destructor infestation are
both due to the mites themselves and the viruses
they transmit, and differences in viral virulence
are well established (Anderson 4; Vojvodic et al.
69;McMahon et al. 53). As such, it is possible that
feral mites harbor different populations of viruses
than those circulating in managed colonies and
these feral viruses could have differential viru-
lence or G × G interactions, leading to distinct
health outcomes relative to mite infestation on
their own in the absence of viruses.

Colony level mortality was a key measurement
in our assessment of virulence of Varroa
destructor on the honey bee colonies. The level
of colony mortality (86%) across 2 years by the
simple addition of mites indicates just how viru-
lent V. destructor mites are for honey bee colo-
nies. These findings are in line with another study
that determined V. destructor was responsible for
> 85% of the colony mortalities (Guzmán-Novoa
et al. 36). However, we did not find an effect of
mite background on colony survival (Figure 3).
We had expected that the higher mite levels in
colonies inoculated with mites from managed
backgrounds would translate into worse health
outcomes and reduced colony survival in these
colonies. That we did not see these results sug-
gests that there are other factors such as queen
health (Amiri et al. 3) or viral infections that play a
more important role than mite infestation. Addi-
tionally, the finding that our negative controls had
similar survival outcomes as our treatment groups
demonstrates that a single treatment for Varroa
destructor infestations is ineffective, even when
that treatment clears all or nearly all mites from a
colony. One study found that while a single treat-
ment of oxalic acid caused 97.6% mortality in
V. destructor mites, an additional treatment result-
ed in 99.6%mortality leaving the possibility that a
small population of mites could reestablish after a
single treatment (Al Toufailia et al. 1).

4.4. Future research

While our study provides insights into how
mites from different backgrounds interact with
bee colonies of a similar background, our results
also indicate that a cross-infection study with bees
from different backgrounds would help us further
understand the trade-offs that occur in this system.
Specifically, we suggest that future studies ex-
plore how human management contributes to
virulence-transmission trade-offs by measuring
transmission and virulence of mites introduced
into mite-free apiaries such as Hawley et al. per-
formed with a bird disease (2013). Additionally,
we need to determine the conditions under which
mite levels are dissociated from colony harm.
Future work needs to focus on the role viruses
play in the Varroa destructor -honey bee system.
This three-way system could interact in potential-
ly unexpected ways including mechanisms that
confound our present understanding.

5. CONCLUSION

Host population densities in managed honey bee
apiaries are vastly different than what Varroa
destructor experiences in feral honey bee popula-
tions. We provide evidence consistent with the idea
that selection pressures on mites in these managed
conditions favor increased reproductive rates. This
could act to increase the transmission rate in these
managed environments. However, we did not find
negative strength and survival outcomes that we
expectedwith these highermite burdens.Mites from
feral backgrounds may have caused negative health
outcomes due to a mismatch in coevolved bee and
mite strains. Future research needs to determine the
conditions under which mite levels are dissociated
from virulence and whether human management of
bee colonies is driving selection for more damaging
mites.
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